
Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Contest Strategy

Robin Visser

IOI Training Camp
University of Cape Town

6 February 2016

1 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Overview

1 Background

2 Tips
Reading
Planning
Coding
Timing
Testing
Debugging

3 Sample strategy

4 Summary

2 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Background

• All good sportsmen spend considerable time planning an
effective strategy. Programming contests are no exception.

• Having a strategy is an essential component to doing well
in any olympiad contest.

• One’s score is a combination of skill and adequate
planning.

• One might have a different strategic approach for different
contests.

3 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Background

• All good sportsmen spend considerable time planning an
effective strategy. Programming contests are no exception.

• Having a strategy is an essential component to doing well
in any olympiad contest.

• One’s score is a combination of skill and adequate
planning.

• One might have a different strategic approach for different
contests.

3 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Background

• All good sportsmen spend considerable time planning an
effective strategy. Programming contests are no exception.

• Having a strategy is an essential component to doing well
in any olympiad contest.

• One’s score is a combination of skill and adequate
planning.

• One might have a different strategic approach for different
contests.

3 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Background

• All good sportsmen spend considerable time planning an
effective strategy. Programming contests are no exception.

• Having a strategy is an essential component to doing well
in any olympiad contest.

• One’s score is a combination of skill and adequate
planning.

• One might have a different strategic approach for different
contests.

3 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Reading the questions

• Always read all the questions before doing any coding.
Many contests don’t have the questions in order of
difficulty.

• Read through each question thoroughly. Take note of any
edge cases that may be easy to miss.

• Take note of the constraints, including subtasks.

4 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Reading the questions

• Always read all the questions before doing any coding.
Many contests don’t have the questions in order of
difficulty.

• Read through each question thoroughly. Take note of any
edge cases that may be easy to miss.

• Take note of the constraints, including subtasks.

4 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Reading the questions

• Always read all the questions before doing any coding.
Many contests don’t have the questions in order of
difficulty.

• Read through each question thoroughly. Take note of any
edge cases that may be easy to miss.

• Take note of the constraints, including subtasks.

4 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Planning

• Don’t implement immediately after getting a possible
solution.

• Consider the time complexity and memory of your
solution. Think of optimisations to make.

• Implement the simplest possible solution. Don’t
over-complicate things.

• For a more algorithmically complex solution, try to judge if
you can efficiently implement said solution. If not, perhaps
go for a slower approach, but easier to implement.

• Try to judge how long a solution takes to implement
compared to the pay-off in potential marks gained.

5 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Planning

• Don’t implement immediately after getting a possible
solution.

• Consider the time complexity and memory of your
solution. Think of optimisations to make.

• Implement the simplest possible solution. Don’t
over-complicate things.

• For a more algorithmically complex solution, try to judge if
you can efficiently implement said solution. If not, perhaps
go for a slower approach, but easier to implement.

• Try to judge how long a solution takes to implement
compared to the pay-off in potential marks gained.

5 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Planning

• Don’t implement immediately after getting a possible
solution.

• Consider the time complexity and memory of your
solution. Think of optimisations to make.

• Implement the simplest possible solution. Don’t
over-complicate things.

• For a more algorithmically complex solution, try to judge if
you can efficiently implement said solution. If not, perhaps
go for a slower approach, but easier to implement.

• Try to judge how long a solution takes to implement
compared to the pay-off in potential marks gained.

5 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Planning

• Don’t implement immediately after getting a possible
solution.

• Consider the time complexity and memory of your
solution. Think of optimisations to make.

• Implement the simplest possible solution. Don’t
over-complicate things.

• For a more algorithmically complex solution, try to judge if
you can efficiently implement said solution. If not, perhaps
go for a slower approach, but easier to implement.

• Try to judge how long a solution takes to implement
compared to the pay-off in potential marks gained.

5 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Planning

• Don’t implement immediately after getting a possible
solution.

• Consider the time complexity and memory of your
solution. Think of optimisations to make.

• Implement the simplest possible solution. Don’t
over-complicate things.

• For a more algorithmically complex solution, try to judge if
you can efficiently implement said solution. If not, perhaps
go for a slower approach, but easier to implement.

• Try to judge how long a solution takes to implement
compared to the pay-off in potential marks gained.

5 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Coding

• Keep the code as simple as possible.

• Consider memorising a template to use shortcuts.

• Do not try to be too clever at the expense of wasting time
or introducing bugs.

• Consider coding up brute force solutions.

• Don’t be afraid to use white space, comments, meaningful
variable names. Will make debugging much easier.

• Partial marks are your friend. Don’t just try to code up
one problem 100% at the expense of not getting any
partials for other problems.

6 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Coding

• Keep the code as simple as possible.

• Consider memorising a template to use shortcuts.

• Do not try to be too clever at the expense of wasting time
or introducing bugs.

• Consider coding up brute force solutions.

• Don’t be afraid to use white space, comments, meaningful
variable names. Will make debugging much easier.

• Partial marks are your friend. Don’t just try to code up
one problem 100% at the expense of not getting any
partials for other problems.

6 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Coding

• Keep the code as simple as possible.

• Consider memorising a template to use shortcuts.

• Do not try to be too clever at the expense of wasting time
or introducing bugs.

• Consider coding up brute force solutions.

• Don’t be afraid to use white space, comments, meaningful
variable names. Will make debugging much easier.

• Partial marks are your friend. Don’t just try to code up
one problem 100% at the expense of not getting any
partials for other problems.

6 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Coding

• Keep the code as simple as possible.

• Consider memorising a template to use shortcuts.

• Do not try to be too clever at the expense of wasting time
or introducing bugs.

• Consider coding up brute force solutions.

• Don’t be afraid to use white space, comments, meaningful
variable names. Will make debugging much easier.

• Partial marks are your friend. Don’t just try to code up
one problem 100% at the expense of not getting any
partials for other problems.

6 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Coding

• Keep the code as simple as possible.

• Consider memorising a template to use shortcuts.

• Do not try to be too clever at the expense of wasting time
or introducing bugs.

• Consider coding up brute force solutions.

• Don’t be afraid to use white space, comments, meaningful
variable names. Will make debugging much easier.

• Partial marks are your friend. Don’t just try to code up
one problem 100% at the expense of not getting any
partials for other problems.

6 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Coding

• Keep the code as simple as possible.

• Consider memorising a template to use shortcuts.

• Do not try to be too clever at the expense of wasting time
or introducing bugs.

• Consider coding up brute force solutions.

• Don’t be afraid to use white space, comments, meaningful
variable names. Will make debugging much easier.

• Partial marks are your friend. Don’t just try to code up
one problem 100% at the expense of not getting any
partials for other problems.

6 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Timing

• Modern processors can handle roughly 108 to 109

operations per second.

• If N ≤ 10000 then O(n2), for N ≤ 500 then O(n3).

• If N very small (N ≤ 20) then try brute force.

• Don’t optimise more than what’s required (e.g. going from
a O(n log n) solution to a O(n) solution is probably not
necessary)

7 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Timing

• Modern processors can handle roughly 108 to 109

operations per second.

• If N ≤ 10000 then O(n2), for N ≤ 500 then O(n3).

• If N very small (N ≤ 20) then try brute force.

• Don’t optimise more than what’s required (e.g. going from
a O(n log n) solution to a O(n) solution is probably not
necessary)

7 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Timing

• Modern processors can handle roughly 108 to 109

operations per second.

• If N ≤ 10000 then O(n2), for N ≤ 500 then O(n3).

• If N very small (N ≤ 20) then try brute force.

• Don’t optimise more than what’s required (e.g. going from
a O(n log n) solution to a O(n) solution is probably not
necessary)

7 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Timing

• Modern processors can handle roughly 108 to 109

operations per second.

• If N ≤ 10000 then O(n2), for N ≤ 500 then O(n3).

• If N very small (N ≤ 20) then try brute force.

• Don’t optimise more than what’s required (e.g. going from
a O(n log n) solution to a O(n) solution is probably not
necessary)

7 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Testing

• Make up unit test cases to check your solution, other than
the sample test cases given to you.

• Consider boundary cases and special cases (small/large
values, off-by-one errors)

• Use brute force solutions to compare test data with your
optimised solutions.

• Use assertions: assert(condition);

• Most people don’t spend enough time testing, although
time spent on testing will depend on whether detailed
feedback is available.

8 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Testing

• Make up unit test cases to check your solution, other than
the sample test cases given to you.

• Consider boundary cases and special cases (small/large
values, off-by-one errors)

• Use brute force solutions to compare test data with your
optimised solutions.

• Use assertions: assert(condition);

• Most people don’t spend enough time testing, although
time spent on testing will depend on whether detailed
feedback is available.

8 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Testing

• Make up unit test cases to check your solution, other than
the sample test cases given to you.

• Consider boundary cases and special cases (small/large
values, off-by-one errors)

• Use brute force solutions to compare test data with your
optimised solutions.

• Use assertions: assert(condition);

• Most people don’t spend enough time testing, although
time spent on testing will depend on whether detailed
feedback is available.

8 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Testing

• Make up unit test cases to check your solution, other than
the sample test cases given to you.

• Consider boundary cases and special cases (small/large
values, off-by-one errors)

• Use brute force solutions to compare test data with your
optimised solutions.

• Use assertions: assert(condition);

• Most people don’t spend enough time testing, although
time spent on testing will depend on whether detailed
feedback is available.

8 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Testing

• Make up unit test cases to check your solution, other than
the sample test cases given to you.

• Consider boundary cases and special cases (small/large
values, off-by-one errors)

• Use brute force solutions to compare test data with your
optimised solutions.

• Use assertions: assert(condition);

• Most people don’t spend enough time testing, although
time spent on testing will depend on whether detailed
feedback is available.

8 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Debugging

• Simplest way to debug is to print additional output (trace
statements)

• Can often be the easiest way to quickly debug a small
error in the code.

• For more advanced debugging, the GDB Debugger (gdb)
is very useful

9 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Debugging

• Simplest way to debug is to print additional output (trace
statements)

• Can often be the easiest way to quickly debug a small
error in the code.

• For more advanced debugging, the GDB Debugger (gdb)
is very useful

9 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Debugging

• Simplest way to debug is to print additional output (trace
statements)

• Can often be the easiest way to quickly debug a small
error in the code.

• For more advanced debugging, the GDB Debugger (gdb)
is very useful

9 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Strategy for COCI

What would be the best strategy to approach a COCI contest?

• 3 hours with 6 problems

• Partial scoring.

• Detailed feedback?

• Only 30 minutes per question. Either try for partials for all
questions, or solve a few perfectly?

10 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Strategy for COCI

What would be the best strategy to approach a COCI contest?

• 3 hours with 6 problems

• Partial scoring.

• Detailed feedback?

• Only 30 minutes per question. Either try for partials for all
questions, or solve a few perfectly?

10 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Strategy for COCI

What would be the best strategy to approach a COCI contest?

• 3 hours with 6 problems

• Partial scoring.

• Detailed feedback?

• Only 30 minutes per question. Either try for partials for all
questions, or solve a few perfectly?

10 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Strategy for COCI

What would be the best strategy to approach a COCI contest?

• 3 hours with 6 problems

• Partial scoring.

• Detailed feedback?

• Only 30 minutes per question. Either try for partials for all
questions, or solve a few perfectly?

10 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Strategy for COCI

What would be the best strategy to approach a COCI contest?

• 3 hours with 6 problems

• Partial scoring.

• Detailed feedback?

• Only 30 minutes per question. Either try for partials for all
questions, or solve a few perfectly?

10 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Summary

• Every person has their own strategy that works for them.

• The only way to determine what works best for you is to
practice contests regularly.

• Don’t be afraid to try new approaches when practicing at
home (you don’t want to adopt a completely new strategy
only at the IOI)

11 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Summary

• Every person has their own strategy that works for them.

• The only way to determine what works best for you is to
practice contests regularly.

• Don’t be afraid to try new approaches when practicing at
home (you don’t want to adopt a completely new strategy
only at the IOI)

11 / 11



Contest
Strategy

Robin Visser

Background

Tips

Reading

Planning

Coding

Timing

Testing

Debugging

Sample
strategy

Summary

Summary

• Every person has their own strategy that works for them.

• The only way to determine what works best for you is to
practice contests regularly.

• Don’t be afraid to try new approaches when practicing at
home (you don’t want to adopt a completely new strategy
only at the IOI)

11 / 11


	Background
	Tips
	Reading
	Planning
	Coding
	Timing
	Testing
	Debugging

	Sample strategy
	Summary

